EHR Big Data Deep Phenotyping
نویسندگان
چکیده
Objectives: Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods: As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions: Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research.
منابع مشابه
EHR Big Data Deep Phenotyping. Contribution of the IMIA Genomic Medicine Working Group.
OBJECTIVES Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. METHODS As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increase...
متن کاملRisk Prediction with Electronic Health Records: A Deep Learning Approach
The recent years have witnessed a surge of interests in data analytics with patient Electronic Health Records (EHR). Data-driven healthcare, which aims at effective utilization of big medical data, representing the collective learning in treating hundreds of millions of patients, to provide the best and most personalized care, is believed to be one of the most promising directions for transform...
متن کاملComputational Methods for Electronic Health Record-driven Phenotyping
Each year the National Institute of Health spends over 12 billion dollars on patient related medical research. Accurately classifying patients into categories representing disease, exposures, or other medical conditions important to a study is critical when conducting patientrelated research. Without rigorous characterization of patients, also referred to as phenotyping, relationships between e...
متن کاملDistilling Knowledge from Deep Networks with Applications to Healthcare Domain
Exponential growth in Electronic Healthcare Records (EHR) has resulted in new opportunities and urgent needs for discovery of meaningful data-driven representations and patterns of diseases in Computational Phenotyping research. Deep Learning models have shown superior performance for robust prediction in computational phenotyping tasks, but suffer from the issue of model interpretability which...
متن کاملBayesian Nonparametric Collaborative Topic Poisson Factorization for Electronic Health Records-Based Phenotyping
Phenotyping with electronic health records (EHR) has received much attention in recent years because the phenotyping opens a new way to discover clinically meaningful insights, such as disease progression and disease subtypes without human supervisions. In spite of its potential benefits, the complex nature of EHR often requires more sophisticated methodologies compared with traditional methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017